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ABSTRACT: Signal Detection Theory (SDT) has come to be used
in a wide variety of fields where noise and imperfect signals present
challenges to the task of separating hits and correct rejections from
misses and false alarms. The application of SDT helps illuminate
and improve the quality of decision-making in those fields in a num-
ber of ways. The present article is designed to make SDT more ac-
cessible to forensic scientists by: (a) explaining what SDT is and
how it works, (b) explicating the potential usefulness of SDT to
forensic science, (c) illustrating SDT analysis using forensic science
data, and (d) suggesting ways to gain the benefits of SDT analyses
in the course of carrying out existing programs of quality assess-
ment and other research on forensic science examinations.
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Signal Detection Theory (SDT) constitutes both a body of
knowledge and a set of analytical methods designed to rigorously
examine decision making by machines and people alike. SDT is a
product of the marriage in the 1950s of mathematical statistics and
advances in electronic communications (1).

Radar is the archetypal technology that precipitated SDT’s de-
velopment and provided its principal metaphor. The advent of
radar technology presented air traffic observers with the challenge
of detecting the “signal” returned from aircraft amid the din of
instrumentation disturbances, echoes, and other “noise” that
closely resembled the signal itself. (Note that we already are en-
countering the terminology of SDT. To assist the reader, Appendix
1 provides a list of major terms used in Signal Detection Theory
and their definitions.) Errors could lead to such tragedies as mis-
taking a foe for a friend (or vice versa), or allowing two planes into
a vector where only one could safely fly. SDT provided a means to
quantify and analyze such decision problems, and in so doing en-
able the decisions to be optimized.

Since ts origins, SDT methodology has been adopted for use in
a wide variety of fields, among them:

» Military applications. Given SDT’s origins in the testing of
various technologies and procedures useful to the military, it is
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not surprising that SDT has been employed to optimize the use
not only of radar but of sonar, seismic detectors, and laser
radar, as well as in evaluating human performance in activities
ranging from visual observation techniques to air combat
(2-6).

Psychology and Human Factors. SDT is a familiar tool in psy-
chological research, where it has been applied to a broad range
of psychological processes, including perception (7-10),
memory (11-14), forecast accuracy (15), human vigilance
(16,17), and even the detection of social cues (18).

Medical diagnosis. In radiology, SDT has been utilized both to
assess the practitioner’s interpretation of radiographic output
and to evaluate the diagnostic accuracy of various radio-
graphic technologies (19-23). For instance, through the im-
plementation of SDT methodology, computed tomography
was determined to be diagnostically superior to radionucleide
scanning for tumor detection (22)—a finding that revolution-
ized medical diagnosis.

Psychiatric diagnosis. SDT methodology has been used exten-
sively in the assessment and development of tests and mea-
sures to facilitate psychiatric diagnosis (24-28).

Dentistry. SDT methodology has been used to evaluate en-
dodontic techniques as well as to compare the effectiveness of
different imaging and diagnostic procedures (29,30).

Clinical chemistry. Chemists utilize SDT to identify and as-
sess various chemical parameters. For example, SDT has been
used to identify chemical indicators of organ rejection (31) and
to distinguish cancerous lesions (32).

Engineering. SDT has found important uses in engineering, in
such areas as acoustical engineering and electrical engineer-
ing, and especially in telecommunications (33-36).

SDT also would be helpful, and perhaps ideal, for analyzing the
decision making involved in forensic examinations. As in other
fields, SDT methodology could contribute to deepening our under-
standing of decision making in forensic examinations and to im-
proving the quality and accuracy of the conclusions resulting from
those examinations. Using SDT, it is possible to quantify and ana-
lyze the diagnostic capabilities of forensic examiners, their instru-
ments, and their procedures. Indeed, in a few instances, SDT al-
ready has had forensic science applications, though most of that
work has not been conducted by forensic scientists. For example,
psychologists have used it to assess the accuracy of polygraphic lie
detection (37,38). Communications experts and engineers have ap-
plied SDT to forensic voice spectrography (39). And engineers and
cognitive scientists have used SDT to develop pattern recognition
procedures that may be useful in a variety of areas of forensic sci-
ence (40).



Very recently, two studies by forensic dentists have employed
SDT. Whittaker et al. (41) compared the performances of senior
and junior forensic odontologists, final year dental students, gen-
eral practitioners with no forensic experience, police officers, and
social workers in distinguishing the bitemarks of children and
adults. (The first three of those groups performed equally well and
significantly better than did the latter three groups.) In the second
study, Andersen and Wenzel (42) compared two dental imaging
techniques: subtraction radiography and conventional bitewing
films. The patients examined had no dental restorations, thus
adding to the difficulty of identification. Examiners were asked to
match each bitewing to its source using a four-point confidence rat-
ing scale. (The conventional bitewing films produced poor perfor-
mance [three out of four observers were inaccurate], accuracy was
notably improved with subtraction radiography.)

The present article is designed to make Signal Detection Theory
more accessible to forensic science. The article will: (a) explain
briefly what SDT is and how it works, (b) explicate the potential
usefulness of SDT to forensic science, (c) illustrate SDT analysis
using forensic science data, and (d) suggest ways to gain the bene-
fits of SDT analyses in the course of carrying out existing programs
of quality assessment and other research in and on forensic science.

An Overview of Signal Detection Theory
Origins and Purposes of Signal Detection Theory

As mentioned above, the theory of signal detectability (as it was
termed originally) was developed in the contexts of mathematics
and engineering. Signal Detection Theory was specifically de-
signed to address problems encountered in radar identification.
While the advent of radar has proven invaluable to modern com-
mercial and military aviation, the interpretation of radar waves is
not precise. Consider the task of an air traffic controller, who di-
rects pilots into safe flight paths, that is, into unoccupied vector air-
ways. The controller must decide whether or not a particular path
is occupied by any other aircraft. The opposing aircraft can be
thought of as the “signal” that the air traffic controller must de-
tect—if it is present—in order to avoid a flight hazard. The con-
troller makes these judgments on the basis of examining a complex
array of radar signals. The risks are that the controller may erro-
neously conclude either that an opposing aircraft is present when it
is not, or that one is not present when it is.

Prior to the inception of SDT, analytical techniques focused on
a single index of judgmental accuracy, namely, the percentage of
correct decisions. The accuracy of detection was considered, sta-
tistically speaking, to be a lone function of ability: accuracy was
equated with the sensitivity of the observer (or the equipment) to
the presence of the signal. That is, each outcome, be it safe passage
or fatal crash, was presumed to reflect only the raw ability of a
radar technician to perceive a true signal, discriminating this signal
from mere radar disturbance, or “noise.”

The technician’s discrimination ability, however, is not the sole
determinant of the judgment outcome. Given ambiguous input to
scour, the technician must decide whether a noisy pattern is or is
not a true signal. Does a radar blip indicate the presence of an-
other aircraft or is it merely static? Given an indistinct pattern to
analyze, even the most competent technician is forced to make an
uncertain judgment. In order to make that judgment, the examiner
must form an implicit decision threshold, a borderline that divides
a decision that a “signal is present” from a decision of “no signal.”
The location of that threshold is affected, among other things, by
the realization that some kinds of errors are more serious than oth-
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ers. For example, the error of deciding that a flight vector is un-
occupied when in reality it is occupied is more dangerous than the
error of deciding that a vector is occupied when in reality it is
clear. To optimize those decisions, more needs to be known about
the factors that contribute to judgment and their dynamics.

Swets (43) provides a candid reminder that scientists and diag-
nosticians frequently operate in a realm of imprecision and ambi-
guity, where decisions nevertheless must be made despite murky,
indistinct data in less than clear contexts.

Diagnostic tests and systems of many kinds are used in a host
of practical settings to assist in making a positive or negative
decision about the occurrence of a particular event or the ex-
istence of a particular condition. Will an impending storm
strike? Is this aircraft unfit to fly? Is that plane intending to
attack this ship? Is this nuclear power plant malfunctioning?
Is this assembly-line item flawed? Does this patient have the
acquired immune deficiency (AIDS) virus? Is this person ly-
ing? Is this football player using drugs? Will this school (or
job) applicant succeed? Will a document so indexed contain
the information sought? Does this tax return justify an audit?
Is there oil in the ground here? Will the stock market advance
today? Will this prisoner vindicate parole? Are there explo-
sives in this luggage?

These examples are a reminder that diagnostic test results
do not usually constitute compelling evidence for or against
the condition or event of interest, or evidence of a sort that
leads directly to either a positive or negative decision (p. 522).

An Illustration

The ABC Laboratory screens skin biopsies for cancer. Tissue
samples are scored on a scale that runs from 1 (normal tissue)
through 7 (clearly malignant). This score measures the number and
degree of abnormal cell elements.

A tissue sample from a 16-year-old girl is received and scored as
a 3. A score of 3 is ambiguous: it might be an early indicator of
melanoma (signal) or it might be due to normal tissue variation
(noise). Because melanoma is very unusual in teenagers, the lab re-
ports “no cancer” to the physician. But the lab is wrong, and
14 months later the girl dies of the melanoma. At a later civil trial
for the missed diagnosis, laboratory technicians testify that had
a sample scored as 3 come from a middle-aged or older person, they
would have reported possible malignancy to the physician, since
melanoma is more common in older adults. When the stakes are
high, as in this case of unidentified cancer resulting in death, an er-
ror in signal detection can lead to disastrous consequences.

Unfortunately, diagnoses of this type do not involve clearly dif-
ferentiated pieces of information. Many decisions, in this and other
fields, are close calls made in the ambiguous, gray area where real-
ity is less than certain. Given ambiguous input to sift through, an
examiner must at some point make the cancer-or-not call.

The capability of the lab to discriminate tissue samples may not
be the issue. Often of greater importance is the threshold set for in-
terpretation. The lab described above may have required a rating of
4 or higher before it would declare a teenager’s biopsy to indicate
malignancy. With equal proficiency at perceiving and scoring
biopsy samples, the lab could have set 3 as the minimum threshold
for reporting samples from teenagers as cancerous. An undesirable
trade-off for doing that, of course, is that more noncancerous sam-
ples would then be reported as malignancies, leading to unneces-
sary and potentially harmful treatment.
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An Explication of SDT

Signal Detection Theory is an analytical approach specifically
designed to address ambiguous decision scenarios, such as in the
preceding illustration. This approach is designed to disentangle the
two major components of accuracy inherent in fuzzy-choice deci-
sion situations: the examiner’s discrimination ability (or diagnostic
ability, or degree of sensitivity to the evidence) and the decision
threshold used by the examiner. Two examiners with equal dis-
crimination ability will reach different conclusions if they employ
different decision thresholds for determining what is and what is
not a signal. In our biopsy lab illustration, diagnostic accuracy is a
function of both the lab’s ability in testing for cancer (given proper
equipment and expertise) and the decision threshold used to deter-
mine whether or not a sample is diseased.

Thus, decision outcomes depend upon two distinct components
of accuracy: discrimination ability and decision thresholds.

Discrimination Ability—Discrimination ability can be thought
of as the capacity to analyze the information (or discriminate the
evidence) at hand. It is the perceptual ability to discern similarities
and differences among stimuli. Discrimination capacity is a func-
tion of both (a) the technician’s ability and (b) the quality of the
evidence. “Quality of the evidence” refers to the fact that where the
signal-to-noise ratio is greater, sensitivity will be greater, and vice
versa. Quality is greater where the signal-to-noise ratio is higher.
Differences in ability no doubt exist across labs, examiners, and
types of analyses being performed.

Decision Threshold—But even assuming that all medical radio-
logy labs, for example, had equal analyzing ability (due to similar
experience, knowledge, skill, and technology), and therefore were
equally proficient in discriminating the evidence, they still could
differ in their decision outcomes because they use different deci-
sion thresholds. These differences in decision thresholds result in
some labs making more and others making fewer mistakes in their
ultimate case decisions. The decision threshold or decision point is,
figuratively speaking, the line which, when perceived to be
crossed, turns a presumed negative into a positive. The decision
point represents the confidence threshold of the examiner for af-
firming the presence of diseased tissue (for one example, or match-
ing latent and known fingerprints, for another). The decision
threshold set for examining evidence often varies across different
laboratories, examiners, and circumstances. Two factors are di-
rectly relevant to setting the decision threshold:

Prior probability of a positive—In the example of diagnosis of
disease, is the disease frequent or infrequent? If infrequent, a
strict (or conservative) criterion typically is set for concluding
that disease is present (i.e., a higher scale rating is needed). If fre-
quent, a lenient criterion typically is set (i.e., a lower scale rating
is necessary to conclude that disease is present).

Utilities associated with each possible outcome—The utilities,
or costs and benefits, of a decision can include life-and-death
consequences, time, money, and numerous other considerations.
For example, false positives can lead to the dangers of
chemotherapy and associated costs of treatment. False negatives
can lead to worsening of the disease and the risk of death.

An example of the impacts of context and motivation on the set-
ting of subjective decision points is provided by a military exam-
ple. The USS Stark was attacked by an enemy aircraft that had not

been detected (43). In response, observers’ criteria for detection
lowered as they became more vigilant. The consequence was an er-
roneous attack on a civilian airliner mistakenly judged to be an at-
tack aircraft. As different as these two outcomes are, they can be
the product of equally good stimulus discrimination, accompanied
by shifting decision criteria. The accuracy of decisions is thus
biased by the decision threshold, and does not depend only on an
examiner’s detection ability.

The biopsy laboratory example will enable us to see how both
factors, discrimination ability and decision tendency, affect deci-
sion outcomes. First of all, some kinds of cancers are easier to
discern than others, that is, the quality of information varies
across cancer types. Moreover, obviously, some lab technicians
and some labs are more skilled than others in discriminating
whatever evidence is submitted. But, within a given lab or exam-
iner, discrimination capacity remains fairly constant. Thus, re-
gardless of the patient’s age, the lab utilizes the same procedures
to test samples. For both a 16-year-old and a 60-year-old, the
lab’s competency (i.e., its discrimination ability) is identical.
What does differ between these two cases is the decision criterion
used to make the binary cancer-or-not decision. The decision
threshold represents the point at which the lab is willing to de-
clare “cancer.” There is no magic formula for setting decision
thresholds; they vary as a function of the psychological factors of
expectancies (perceived prior probabilities) and motivation (per-
ceived utilities).

For example, given the possibility of a rapidly progressing can-
cer such as melanoma, an erroneous diagnosis of cancer is a more
“desirable” or less costly mistake than is overlooking a cancer that
could result in death. Considering only these costs, labs would be
motivated to adopt a very lax decision criterion: ambiguous scores
would be classified as cancerous. The likelihood of having cancer,
however, is also an issue. Since, for example, older people are
much more likely (than younger ones) to develop cancerous
melanoma, criteria will tend to be set lower for older patients and
higher for younger patients. Accordingly, on identical evidence,
different decisions will be made. The lab, trying to establish the
best criterion for choice, likely takes into account both the prior
probabilities and the utilities of each possible outcome. If labs do
not address these issues directly and consciously, then the setting
of decision thresholds is, in effect, delegated to the varying psy-
chology of individual examiners.

With the biopsy example in mind, we can begin to formalize and
then quantify what we can know about such decision-making.
There are two alternative states of “reality”: disease (signal pre-
sence) vs. no disease (signal absence). An examiner can make one
of two possible determinations: disease present vs. disease absent.
Thus, one of four joint outcomes is possible for this or any diagno-
sis: the lab could be in error either by (a) overlooking a cancerous
sample (a “miss” in the language of SDT) or (b) labeling a cancer-
free sample as malignant (a “false alarm”). Alternatively, the lab
could be correct either by (c) accurately diagnosing cancer (a “hit”)
or (d) correctly classifying a sample as benign (a “correct rejec-
tion”). These four outcomes are depicted in Fig. 1.

Costs and benefits are associated with each of these decisions,
and the choices involve tradeoffs (43). A fundamental point is that
trade-offs exist among the proportions, or probabilities, of the four
outcomes. Exactly where the criterion is set determines the balance
among these proportions. Where the decision threshold is low or
“lenient,” more hits will occur, but more false alarm errors also will
occur. Where the threshold is high or “strict,” more correct rejec-
tions will occur, but so will more misses. A technician can be con-



sistently competent, but vary in detection accuracy as a function of
using different decision criteria.

The Relative (or Receiver) Operating Characteristic Curve

One of the greatest advantages of SDT is that it permits re-
searchers to assess “accuracy” as an independent function of dis-
crimination ability. That is, SDT allows one to disentangle raw dis-
crimination capacity from the effects of varying decision
thresholds. This is accomplished by the use of a specific analytic
tool associated with SDT, the ROC curve, shown in Fig. 2. ROC is
an acronym for “relative operating characteristic” (also often re-
ferred to as “receiver operating characteristic™). It is a graphical
representation of decision factors.

The ROC graph is a plot of the proportion of hits against the pro-
portion of false alarms for a specified number of decisions. Note
that although four outcomes are possible for each decision, as dis-
cussed above, only two independent response probabilities exist.
Thus, for example, given a true diseased tissue sample, the
response can be either a hit or a miss; the sum of hit and miss prob-
abilities equals 1.00. Given a true nondiseased sample, the
response outcome will be either a false alarm or a correct rejection;
the sum of these two response probabilities is also equal to 1.00. As
aresult, knowing the probability of hits provides information about
the probability of misses. Likewise, given either a false alarm or
correct rejection probability, one can infer its complement. Conse-

Reality
Decision Disease No Disease
Yes, diseased Hit False Alarm
No, not diseased Miss Correct Rejection

FIG. 1—Four possible decision outcomes.

Hypothetical ROC Curve
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FIG. 2—An illustrative ROC curve with four plotted outcome propor-
tions: (0.10, 0.45), (0.25, 0.75), (0.45, 0.87), (0.60, 0.90).
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quently, it is necessary to plot only two response proportions, one
corresponding to the truly diseased samples and one corresponding
to the truly disease-free samples. (It is customary to plot hits and
false alarms, though plotting misses against correct rejections
would be conceptually equivalent and equally informative.)

The illustrative ROC curve plotted in Fig. 2 will help us to ex-
plicate the information provided by an ROC curve. The X-axis
represents the proportion of responses that are false alarms. On
the Y-axis are the proportion of responses that are hits. Both con-
ceptually and graphically, the ROC curve provides a distinction
between discrimination ability and decision thresholds, and pre-
sents information on both, separately. Each single plotted point,
i.e., a hit and false alarm proportion pair, represents one decision
threshold. The ROC curve is created by connecting all available
decision threshold points. The measured area under the ROC
curve provides an index of accuracy that reflects pure discrimina-
tion ability—unaffected by varying decision thresholds. Area can
take on values between 0.50, representing chance performance
(where false alarm and hit rates are equal), and 1.00, representing
perfect discrimination between truly diseased and truly nondis-
eased samples.

Importantly, the ROC curve in Fig. 2 represents all possible de-
cision thresholds for a fixed discrimination ability of 0.85. Thus,
for each decision, the lab(s) may be regarded as having good dis-
crimination ability, but the particular decision outcomes vary as a
function the different decision thresholds. To clarify, though dis-
crimination ability is constant for a particular lab, a distinct thresh-
old is used for each decision. Different decision thresholds alter the
relations among the decision outcomes, such that threshold
changes would move points along the curve. More conservative
thresholds, reflecting a bias against affirmative decisions, are rep-
resented by the points toward the lower left corner. Point A in Fig.
2 represents a conservative threshold where false alarms are few
(0.10), but a lower hit rate (0.45) is the tradeoff. That is, slightly
fewer than half of truly diseased samples are classified as such, but
few non-diseased samples are erroneously classified as cancerous.
By contrast, though discrimination ability is constant at 0.85, Point
B represents a relatively uncautious decision threshold where the
observer is more likely to respond positively and declare a sample
to be cancerous. Again, note the tradeoff among outcomes: the hit
rate for cancer detection is higher at 0.87, but because the thresh-
old has become more lenient, the false alarm rate has increased to
0.45. Thus, the ROC graph quantifies and displays both pure dis-
crimination ability (the area under the curve) and the subjective
“threshold” points employed for each decision.

The “Value-Added” of SDT

In sum, what does SDT and its ROC analysis add to the study of
the kinds of decision-making we have been discussing, over and
above counting correct versus incorrect answers? According to
Swets and Pickett (44), SDT provides three distinct and unique ad-
vantages in analyzing decision outcomes.

First, ROC provides a pure index of accuracy, or raw diagnostic
ability. This index is independent of decision biases, incentives,
and so on. SDT allows the two decision parameters, diagnostic
ability and decision tendency, which are two distinct sources of er-
ror, to be disentangled and quantified.

Second, ROC analysis produces an index of the decision thresh-
old. This threshold is a product of the expectancies (prior probabi-
lities) and utilities (costs and benefits) associated with decision out-
comes. Given more precise knowledge of outcome probabilities
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and the specific utilities for correct decisions and errors, this index
can facilitate the specification of an optimal decision threshold.

Third, and relatedly, in using SDT it becomes possible to exa-
mine the covariation among decision outcomes as thresholds vary.
That is, it answers this question: what is the impact of changing
one’s decision threshold (for concluding that the sample or evi-
dence contains a true “signal’”’) on the number of hits, misses, false
alarms, and correct rejections? Decision outcomes stand in direct
relationship to one another such that changes in subjective decision
rules necessarily affect the balance among outcome probabilities.

While typical measures of accuracy confound discrimination
ability with judgment and decisional factors, SDT permits the cal-
culation of pure measures of accuracy that measure discrimination
ability alone. Without an unaffected index of accuracy, inconsis-
tent or variable accuracy rates could be interpreted as reflecting
either poor proficiency or changing decision incentives. Without
independent measures, there would be no way to disentangle such
interpretations. Through ROC analysis, SDT allows for the calcu-
lation of an unbiased measure of discrimination ability, a measure
uncontaminated by varying decision thresholds. Thus, SDT gives
researchers the tools to avoid mistaking the effects of different de-
cision tendencies and differing levels of competency for each
other. This, in turn, opens the door to: (a) more efficient and effec-
tive discovery of factors associated with greater competence, (b)
discovery of factors that affect decision thresholds, and (c) opti-
mizing decision making by gaining control over the decision
thresholds.

Beyond these three principal benefits of SDT, ROC produces a
comprehensive picture of decision outcomes. This method pro-
vides measures and a graphical display of decisional accuracy
across distinct threshold points. Using ROC, the abilities of foren-
sic scientists as human measuring instruments, and the conditions
that give rise to the greatest accuracy, can be more easily and
clearly identified.

Potential Usefulness of Signal Detection Theory in Forensic
Science

The distinction between discrimination capacity and decision
thresholds, the factors that affect those, and the benefits of measur-
ing them, can be as important in forensic science as they have been
in the other fields that have used Signal Detection Theory to gain
greater understanding of and control over their decision-making.

Forensic examinations of evidence commonly attempt to clas-
sify and quantify unknown substances, assist investigators in re-
constructing events surrounding the commission of a crime, and as-
sociate (or disassociate) offenders and victims of crimes and their
environments. Forensic science is similar to the scientific disci-
plines discussed in the foregoing sections of this paper in that
forensic scientists often encounter ambiguous and murky decision-
making situations. Examiners do not have the luxury of preparing
their own evidence samples but must work with physical clues, of-
ten of limited quantity and inferior quality, left in the aftermath of
crimes. The challenge to the forensic examiner is great, particularly
when called upon to individualize evidence; that is, to compare
evidence of unknown origin with a standard of known origin to de-
termine if they share a common source. In some situations, the sig-
nal-to-noise ratio in a forensic comparison may be relatively high,
as where a pristine fingerprint is found on a clean glass counter at
a crime scene. In other situations it may be low, as where a firearms
examiner compares striation marks on a badly damaged bullet with
a bullet test-fired in the laboratory.

Thus, in many of the same ways that it has proved useful to other
fields, SDT might be useful to the study and improvement of work
in the forensic sciences, such as by evaluating the effectiveness of
alternative technologies and procedures; testing the discrimination
capacity of examiners separately from the decision thresholds they
use; identifying the factors that lead to superior discrimination abi-
lity; identifying the influences on decision thresholds; and by set-
ting explicit and optimal decision thresholds.

Sources of Uncertainty in the Process of Forensic Science
Examination

The quest of the forensic examiner to individualize evidence sets
him or her apart from other natural scientists. To do this, the
examiner tries to find something(s) unique about an object that dis-
tinguishes it from all other similar objects. Samples may be sub-
jected to a succession of measurements and placed in more and
more restricted categories of similar objects. In order to graduate to
a higher level of certainty, and ultimately attain an individuality,
the examiner searches for specific characteristics that distinguish
that evidence from material with the same class characteristics and,
therefore, would make it unique. The forensic examiner must be
able to distinguish more general class characteristics of materials
from individual characteristics common to the evidence, its source,
and no other. Conversely, when items are found to possess dissim-
ilar class or individual characteristics, the examiner may conclude
they do not share a common origin.

Rather than making a firm statement of common source, it is more
likely the examiner will conclude the items could have shared, prob-
ably share, or are consistent with sharing a common origin. DeFor-
estetal. (p. 7, 45) refer to such qualified conclusions as “partial in-
dividualizations”. There are varying levels of individualization that
may be reached as an examiner proceeds through a review and notes
points of similarity or dissimilarity. However, with the exception of
such areas as biological fluids where data are recorded on the dis-
tribution of an array of genetic markers in different populations, the
forensic sciences possess little empirical data to assist examiners in
interpreting the meaning of their test results and affixing a proba-
bility or confidence level to their findings. There are also specialties
like fingerprints where professional organizations allow their mem-
bers to offer nothing less than absolute identifications.

The ability of evidence to be individualized is determined, ini-
tially, by the nature of the evidence itself, and whether it bears dis-
tinctive features that can be identified, measured, and interpreted.
Some objects may produce patterns that are easily decipherable
while other mass-produced products may produce none. Finger-
prints, for example, possess features (minutiae) of such intense
variation that, singly or in combination, they are more readily dis-
tinguished from each other. Other kinds of evidence, such as hand-
writing, are less distinctive, so efforts to individualize are funda-
mentally more difficult. In addition, handwriting shows variability
not only between individuals but within individuals (that is, each
person’s writing varies each time that person writes), further com-
plicating the task of individualization. Still other evidence like
paint, glass, soil, new tools, weapons, or other objects may possess
few or no decipherable individualizing characteristics that can be
used to differentiate that item from other similar ones or to associ-
ate that item with its source, and affords only a collection of simi-
lar class characteristics that show the evidence to be consistent, but
not necessarily individualistic.

Independent of the inherent variability of a given type of evi-
dence, the quality of the evidence varies. For example, a latent fin-



gerprint may be complete and clear, or it may be partial, smudged,
and overlapping with other prints. The quality of evidence depends
also upon steps the offender may have taken to eradicate the evi-
dence that was created—wiping down surfaces at the crime scene
to remove fingerprints or forcing a rape victim to bathe. The qua-
lity of evidence may also be compromised by inclement weather,
curious onlookers, or by police investigators who fail to preserve it
properly or contaminate it through faulty packaging. Delicate
markings on bullets may be damaged upon removal from walls,
trees, or human bodies. The examiner is faced with the daunting
task of determining if certain markings were the result of the of-
fender’s actions, or if they occurred later, possibly inadvertently,
by an investigator or evidence collector. Thus, even for evidence
that has the advantage of intense variability, the “signal’s” strength
may be quite weak. Consequently, decisions must be made under
conditions of uncertainty.

The potential for evidence to yield useful information is also in-
fluenced by the sensitivity and reliability of laboratory techniques.
In effect, these techniques enhance the quality of the evidence. For
example, the field of forensic serology has been greatly advanced
in recent years by methods capable of characterizing the DNA of
biological samples, and thereby capitalizing on the variability
across individuals’ DNA. The ability to match blood, semen, and
other body tissue has also been bolstered by the building of popu-
lation databases that have laid a statistical foundation that quanti-
fies the likelihood of finding various DNA types throughout the hu-
man population. Other forensic methods for examining pattern
evidence, including firearms and toolmarks, shoe prints, and hand-
writing, still rely principally on microscopic methods of analysis,
although computerized imaging technology is now being used to
store and retrieve information on bullets and cartridge cases, but is
not used in making ultimate comparisons (p. 478, 46). Once these
examiners are satisfied that both the questioned and standard evi-
dence possess similar class characteristics, they seek out individual
characteristics that appear unique to the particular gun, tool, or in-
dividual that produced the mark in question. Here, the examiner is
challenged to visually (microscopically) compare the similarity of
patterns and form an opinion about the individuality of the evi-
dence. Ordinarily, the examiner does not have access to a database
that assists in quantifying the rarity of the marks, or which even
records them, but must rely on memory of other samples viewed in
the past.

Because there are no standardized curricula in forensic science,
much depends upon the training program at the particular labora-
tory, the person under whom the forensic examiner trained as an
apprentice, and the trainer’s particular approach and philosophy to-
ward forensic comparisons. Because many of these examiners lack
advanced academic or research training, and because the discipline
as a whole lacks a common academic core, examiners do not share
a similar scientific or theoretical basis for examining and interpret-
ing the evidence in question. Subtle or not so subtle lessons are
learned about expectations (prior probabilities) or utilities associ-
ated with correct associations versus false alarms, and correct ver-
sus erroneous exclusions.

Ultimately, evidence comparisons depend on the analyst finding
a sufficient number of points of concordance (and no points of un-
explained discordance) to satisfy some matching criteria that the
examiner has established. Examiners often employ different crite-
ria that are not published or, perhaps, not even articulated. Usually,
the greater the number of points of correspondence, the greater the
confidence in the match. Fingerprints are a good example where
the counting of corresponding minutiae between the questioned
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evidence and known standard forms the basis for an individualiza-
tion (or absolute identification). However, the statistical foundation
for establishing fingerprint individuality is weak, examiners em-
ploy their own standards in forming conclusions, and some juris-
dictions have adopted various different minimum (legal) thresholds
(47).

Consider, also, the situation of the firearms examiner. Even bul-
lets fired consecutively from the same firearm will exhibit dissimi-
larities. Although Rowe (p. 426, 48) states that “if both bullets were
fired from the same barrel, numerous matching patterns will be
readily evident”, at the same time, Burrad observes that, “One of the
most surprising things which must strike any observer who is ex-
amining fired bullets is the astonishing differences that seem to be
present on bullets which are known to have been fired through the
same barrel” (p. 380, 49). The firearms examiner must test fire sev-
eral bullets and intercompare them in order to form a mental image
of the striation patterns that are common to the various test firings.
Examiners use this mental image as a basis for evaluating the degree
of correspondence among the bullets known to have been fired from
the same weapon and the degree of correspondence between those
and a questioned, and often distorted, bullet. Thornton and Rios ad-
vise that just as “total accord” is not to be expected in the striation
markings of bullets fired from the same gun, complete “absence of
accord” is not to be expected from bullets fired from different
weapons (50). In their training, examiners must gain an appreciation
for the extent of striation matching that will be found in bullets fired
from the same versus different guns. A match is declared when the
extent of agreement between the test and evidence bullets exceeds
that of the best known non-match (that is, comparison of bullets
fired from different guns of the same type). Other authors make ref-
erence to these “intuitive criteria” that examiners must acquire
through their training and experience (51), that the criteria for a
match are elusive (50), and that there are “no objective, quantitative
criteria for determining the individuality of toolmarks” (p. 145, 52).

Consider the similarities and differences of the work of the doc-
ument examiner in comparing handwriting. Unlike other types of
evidence, such as fingerprints, which do not change throughout
one’s lifetime, handwriting may change substantially in both sys-
tematic and random ways over both the short and long term, de-
pending upon the writer’s health, the speed of writing, the position
of the writing surface, maturation, and so on. Comparisons are fur-
ther complicated where a person attempts to copy another person’s
signature or possibly disguise his own. From a forensic standpoint,
the quality of a handwriting sample also depends upon the quality
and the quantity of the sample present. Is the evidentiary sample a
single credit card receipt with a lone signature, or a series of checks
the subject may have written over a period of many months? Typ-
ically, examiners will seek representative known/standard writings
by subjects drawn from different sources the subjects are known to
have written. Absent a sufficient number of known writings, sub-
jects may be asked or compelled through court order to provide
handwriting exemplars. The document examiner tries to get a feel-
ing for the range of variation in the subject’s writing by carefully
examining the standards that have been provided. The quantity of
the writing samples is important to establish the range of variation
in particular letters. The risk of erroneous matches is increased
when the quantity of samples is limited or where one author is at-
tempting to simulate the writing of another. Ellen (53) states that
the examiner would expect to find several consistent differences in
the shape and formation of letters written by different individuals,
but not in the natural writing of the same person. He notes hand-
writing examiners experience difficulty in estimating the frequency
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of occurrence of differences, however, and must keep in mind that
not all differences are independent of every other. Examiners apply
varying significance to characteristics found, with greater weight
usually given to those features that are uncommon or peculiar. The
degree of perceived peculiarity, however, is largely a function of
the training and caseload experiences of the individual examiner.
In order to reach a conclusion that the questioned and known writ-
ings were made by the same hand, an examiner must, among other
things, judge that the variation between the questioned and the
known writing is no greater than the variation among the known
standards.

Forensic individualization conclusions, then, typically are the
product of an exercise of an examiner’s judgment in response to an
array of complex stimulus patterns. At the end of the day, the
examiner must decide whether or not to reject a presumption of
non-signal in favor of a conclusion that a signal has been detected.

Using SDT to Answer Research Questions

Our knowledge of the relative capabilities, limits, and potential
of various forensic analytical methods in examining and indivi-
dualizing evidence is at a rudimentary level. Clearly, it would be
useful in the forensic context to be able to assess the various com-
ponents of, and factors contributing to, forensic science decision-
making and the level of accuracy it achieves. Following are exam-
ples of research questions that could be asked and answered with
the help of research employing SDT.

Discrimination Ability

Until now, measures of decisional accuracy by forensic scien-
tists have consisted of simple counts of examiners’ correct and in-
correct responses to known matches and known non-matches. The
use of SDT would permit proficiency test data to measure pure
ability separate from the confounding effects of decision thresh-
olds. This would permit more powerful research on the ability le-
vels of different examiners, labs, procedures, and technologies.

The discrimination ability of forensic scientists appears to vary
across laboratories, examiners, and types of examinations. With
SDT we can begin to pin down more precisely the nature of those
differences. In addition to measuring and describing those varia-
tions, it would be interesting and useful to discover the factors that
facilitate the acquisition of competence or enhance it. It would be
informative to obtain more complete information about the aca-
demic backgrounds, training, and work experiences of the exami-
ners completing proficiency tests. With the increased analytic con-
trol provided by SDT, it would be possible to assess the connection
between examiners’ backgrounds and their competence (after re-
moving the effects of different decision thresholds) as well as to de-
termine if background and training produce differences in the deci-
sion thresholds employed. Do examiners with different training or
experience achieve different levels of discrimination accuracy, or
are apparent differences merely the product of the use of different
decision thresholds? Or are apparent non-differences the result of
different thresholds masking real differences in ability?

For example, the finding that FBI document examiners do no
better than laypersons at finding correct associations (54) might be
found, using SDT analyses, to be the product of real, but offsetting,
differences in discrimination skill and thresholds between experts
and laypersons. Perhaps document examiners have superior dis-
crimination skills than laypersons, but are more cautious in declar-
ing a match. Conversely, underlying the finding of apparent supe-
riority of examiners over amateurs in discriminating writing from

different persons (54), we may find differences in decision thresh-
olds but an absence of differences in discrimination accuracy.

Turning from the people to the technologies and methods, eva-
luations using SDT would facilitate choosing among new tech-
nologies (as has been done in medical imaging) or different exam-
ination techniques. Making these choices would benefit from
having pure measures of the discrimination ability resulting from
the use of one or another technology or adopting one or another
examination protocol.

Decision Thresholds

As discussed earlier, accuracy is not a function merely of dis-
crimination skill, but depends also on the location of decision
thresholds. With the use of SDT, the part played by decision thresh-
olds could be determined. Do they vary from one forensic science
specialty to another? For example, one would expect to find that
fingerprint examiners set uniquely stringent thresholds. Do exam-
iners trained in different specialties, or by different mentors, make
characteristically different uses of decision thresholds (some
higher, others lower, some more stable, others varying)? Even
within the same examiner doing the same type of examination, are
there conditions under which thresholds vary, or do they remain
constant across circumstances?

Do different labs have explicit norms, or cultures that more sub-
tly produce examiners who use higher or lower thresholds, reflect-
ing the values of those labs or the police departments or prosecu-
tors they serve? Peterson et al. (55) found that laboratories in
different cities varied greatly in terms of the percent of time their
written laboratory reports actually disassociated the offender from
the crime. On average, fewer than ten percent of all crime labora-
tory reports excluded the suspect from the crime scene or connec-
tion to the victim. Whereas one laboratory’s reports would include
a statement that the evidence and standard did not share a common
origin (an exclusion), such a finding in the three other laboratories
studied would more commonly be expressed as an “inconclusive”
finding. While much of this variation reflected divergent policies
with respect to reporting such exclusions, or divergent examination
procedures, rather than differences in examiners’ actual conclu-
sions, some of these differences may also reflect differences in the
decision thresholds employed by the personnel of these labs.

Prior experience can lead examiners to have expectations about
the likelihood that evidence examinations will result in inclusions
or exclusions. These differences in experience can lead to differ-
ences in prior probabilities, which in turn can lead to differences in
the setting of subjective decision thresholds. Some limited data
were gathered in the 1980s on the percentage of actual crime labo-
ratory examinations which typically result in positives (inclusions)
and negatives (exclusions) (55). Firearms evidence resulted in as-
sociations between evidence and a standard (bullets, cartridge
cases, weapons) far more often (40 to 80%) than did other types of
evidence. Fingerprints also ranked relatively high in associating of-
fenders to their personal crimes, when compared with other evi-
dence categories, though not as often in associating offenders with
property crimes. (These differences in the likelihood of fingerprint
identifications in different crime categories were due largely to the
relatively indiscriminate collection of fingerprints in property
crimes and a failure or inability of investigators to gather standard
or known fingerprints from suspects to compare with the evidence
prints.) Similarly, the success in using bloodstains to associate sus-
pects with their personal crimes was five fold greater than its abi-
lity to connect offenders with their property crimes. This was pri-



marily explained by the fact that investigators supplied biological
samples of known origin (standards) for personal crimes at a much
higher rate than for property crimes. Moreover, for both finger-
prints and bloodstains, the frequency of matching likely has been
increasing over the past 10 to 15 years, owing to improved labora-
tory procedures for examining such evidence, and the ability to
query computer automated databases in search of “cold” hits.
These differing frequencies of successful matches between types of
evidence, or between types of crimes for the same evidence, or
changes over time, might result in different and changing expecta-
tions by examiners of the likelihood of an inclusion, given certain
types of evidence, which in turn may cause them to shift their de-
cision thresholds.

It is also important to remember that if tools, guns, and suspects
were brought in at random for testing and comparison with crime
scene evidence, the vast majority of them would be excluded. In
other words, the random match probability is very small. Because
evidence standards are not collected randomly, however, but are
chosen by investigators who ordinarily have other evidence or in-
dicators that a particular person or object may be involved, much
of the evidence compared by examiners does in fact correspond
with standards from suspects because the investigator has identi-
fied the true perpetrator. For example, the FBI has reported that in
its case experience about one-third of comparisons performed by
its DNA analysis section have been found to exclude the desig-
nated suspects. Although this rate of exclusion is substantially
higher than Peterson et al. (55) found for laboratories using con-
ventional serology, examiners in both situations most likely ac-
quire an expectation of a high prior probability of a match, certainly
much higher than if they examined evidence brought in with less
selectivity. In comparable decision-making in other fields, prior
expectations such as these have been found to lower examiners’ de-
cision thresholds, making them more likely to announce a “signal”
than may be desirable.

With regard to the utilities associated with examination results,
the prevailing forensic science norm is that the examiner must be
very conservative about declaring a match or common origin be-
tween questioned evidence and materials of known source unless
all (or a reasonable number of other) possibilities are explored and
explained. The judicial environment and its presumption of inno-
cence also send the message that it is better to err by wrongly
exonerating a guilty person than by falsely convicting an innocent
one.

On the other hand, there may be forces that create utility in the
opposite direction. At the extreme, Moenssens has written that
many experts are tempted to “fabricate or exaggerate” results. “All
experts are tempted, many times in their careers, to report positive
results when their inquiries come up inconclusive, or indeed to re-
port a negative result as positive. . . .” (p. 17, 56). There is the anec-
dotal evidence of the recent U.S. Department of Justice Inspector
General’s report showing that pressure has been applied by inves-
tigators for examiners to rewrite their reports to favor a particular
position (57), and also the example of individuals like Fred Zain.
James Starr’s (58) treatments of errant forensic examiners also sug-
gests that the adversarial process can exert profound influence such
that experts desire to help secure a “win” for the team by which
they are employed.

In more subtle ways, the adversary process and the organiza-
tional identity of forensic scientists with police agencies may lead
to a tendency to resolve doubts in favor of inculpation. Or, when an
examiner is working on submitted evidence from a crime, and ad-
ditional information about the case is made available to the exam-
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iner, suggesting a high or low likelihood of the suspect’s guilt, ex-
pectancies are created that can affect decision thresholds. On the
other hand, examiners may be so well trained, even if only impli-
citly, to use pre-set decision thresholds, that they may remain un-
affected by learning about other inculpatory or exculpatory evi-
dence. SDT could help in the study of such issues.

In practice, we also know that forensic examiners sometimes
reach conflicting interpretations of the very same evidence. This is
fairly common with evidence (such as handwriting) where there are
no firm scientific or empirically verified criteria for making com-
mon origin judgments and where the expertise of examiners is
largely a function of the person under whom they trained. Occa-
sionally, too, the difference in expert judgment is influenced by the
side in the litigation employing the expert. SDT provides both a ba-
sis for understanding why two equally skilled experts might reach
different and equally sincere conclusions, and a method for testing
whether that explanation is valid. An expert for the prosecution
may use a lower threshold in forming a conclusion associating a
suspect with a crime victim, while another expert, working for the
defense, may employ a higher threshold and judge the evidence
comparison to be inconclusive.

Finally, one could test some of the effects of proficiency test-
ing methods. Do thresholds vary as a function of whether an
examiner is taking a blind test versus a nonblind test? It may be
that when examiners know they are being tested, they adjust their
decision thresholds to minimize the likelihood of the most serious
type of error in the eyes of the courts or society, namely, a false
alarm (erroneous inclusion), but when working a normal case,
they set their decision thresholds so as to reduce the risk of a miss
(incorrect exclusion).

Developing Optimal, Explicit Decision Thresholds

To date, examinations in forensic science involve essentially in-
tuitive and subjective judgments as to when the presumption of a
nonmatch should be set aside in favor of declaring a match. Even
considering only “objective” points of comparison, various sub-
fields of forensic science have varying rules of thumb concerning
when enough matching points exist, though, in practice, everything
rests with the discretion of the individual examiner. Quality assur-
ance procedures in laboratories that require positive associations to
be verified by another examiner, or which randomly audit or check
the results of completed cases, are procedures intended to control
such discretion.

In firearms and toolmarks examination, Biasotti and Murdock
(p. 150, 52) concluded that among known nonmatching bullet com-
parisons (bullets fired from different weapons), typically no more
than three consecutive corresponding striaec were found. The over-
all percent of matching striae, which varied between 15 and 30%
for nonmatching comparisons, was deemed of limited value as an
identification criterion. Their conservative criteria for a matching
identification were finding “at least two different groups of three
consecutive matching striae in the same relative position, or one
group of six consecutive matching striae.” This makes plain that
other criteria (some less conservative and others even more con-
servative) could be employed, and these variations can lead to dif-
ferent conclusions by different examiners.

Before a document examiner can reach a conclusion of common
origin “a sufficient number of individual characteristics must be pre-
sent in both questioned and known writing,” and “when consi-
dered in combination with each other,” are sufficient to conclude the
writings were executed by the same person (p. 370, 45). Most docu-
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ment examiners state that the “number of significant and consistent
characteristics” that must be present “can be taught only by experi-
ence” (p. 700, 59). “There is no universally accepted number of
points of similarity that the examiner must find before offering an
opinion that two writings are identical” (p. 151, 60). Again, it is clear
that decision thresholds that vary with the examiner can account for
differences in the decisions that document examiners make.

Even in the field of fingerprints, where examiners in other coun-
tries have set varying numbers of points of agreement as the thresh-
old amount of similarity required in order to declare a match (e.g.,
16 in Great Britain, 12 in Austria), in the United States, “[t]he cri-
teria for absolute identification . . . are wholly dependent on the
professional judgment of a fingerprint examiner. When a finger-
print examiner determines that there is enough corresponding de-
tail to warrant the conclusion of absolute identification, then the
criteria have been met” (p. 71, 47).

Not only does the preceding discussion make clear that decision
thresholds can vary considerably from one examination to another,
it suggests the desirability of developing standardized thresholds.
In other fields, Signal Detection Theory has been quite helpful in
work aimed at developing explicit, optimal decision thresholds,
which balance the desire for maximum hits against the desire to
minimize false alarms. In forensic science, SDT could be an im-
portant tool in the development of guidelines that help achieve op-
timal decision thresholds.

To develop an optimal decision threshold, one needs to consider
two important factors: the likelihood of “matching” evidence (in
the case of forensic identification) and the utilities of all possible
decision outcomes. In the formula below, taken from Swets (43),
we see that calculation of an optimal decision point requires the
specification of prior probability estimates and the assignment of
numerical values to the costs of errors and the benefits of correct
responses. In this formula, Sopimar represents the slope of the “best”
ROC curve, where accuracy is high and the tradeoff between the
number of hits and false alarms best suits the decision task at hand.
In the first part of the equation, the expected probabilities of true
non-matches and true matches are represented, with the latter value
in the denominator. In the second part of the equation, costs are
subtracted from benefits in cases where the evidence truly matches
and truly does not match.

(Bcr — Cra)
(Buir — Cwmuss)

How can these values be determined such that they are both re-
liable and accurate? Certainly there is no objective “right” answer.
Swets argues that though determining these values is inherently
challenging, any decision threshold reflects a consideration of
these factors and tentative assumptions of what their respective va-
lues might be. By making the assumed values explicit, the decision
maker can address his or her implicit assumptions and consider
how these assumptions might affect decision outcomes.

As discussed earlier, examiners likely have a relatively high ex-
pectation of a “match,” such that the perceived probability of a
match will exceed the probability of a nonmatch. Examiners should
also consider the utility of each decision outcome. For example,
given a true “match,” it is likely that the benefits of a hit exceed the
costs associated with a miss. (This may, however, also depend on
the severity of the crime under investigation.) Given a true “non-
match,” the greatest disutility in our legal system would be a false
alarm. The cost of a false alarm is therefore no doubt much higher
than the benefit gained from a correct rejection. Considerations of
these kinds facilitate the development of the most optimal decision
thresholds.

P non-match

Soptimal = Proaten
matc

Illustrative Analyses of the Application of SDT to Forensic
Science Data

In this section we illustrate the uses of Signal Detection Theory
by applying it to some forensic science proficiency testing data.
[Concerning proficiency testing in forensic science, see Peterson et
al. (61) and Peterson and Markham (62,63).]

Method

Two different proficiency tests are examined, one on firearms
identification (64) and one on handwriting identification (65). Both
test examples involve discrimination tasks where examiners are
asked to compare evidence samples and determine whether the
evidence found at a crime scene matches evidence taken from sus-
pect(s). Labs are given three options for responding to each evi-
dence comparison: yes, it’s a match; no, it’s not a match; or incon-
clusive (that is, cannot conclude whether it is a match or a
non-match). Though several examiners may be involved in an ex-
amination at a particular lab, each lab provides a single response to
each comparison question.

For analysis, the two reports were considered independently, and
for each report comparison decisions were tallied across all parti-
cipating labs (for that test year). Each lab’s responses were treated
as individual decisions. So, for example, if 40 labs each responded
to three comparisons, 120 decision outcomes were tallied. Thus,
the total number of decisions analyzed was a joint product of the
number of labs participating multiplied by the number of compar-
isons made by each lab. Two different indices were calculated for
each report: discrimination ability and decision tendency. An ROC
curve for each report’s data was graphed by plotting and connect-
ing two decision thresholds. Discrimination ability or perceptual
“accuracy” is represented geometrically as the area under the ROC
curve. A decision tendency was also calculated using outcome pro-
portions. This index is an overall estimate of how the participating
labs are likely to respond when evidence samples do not, in reality,
match.

Two specific analytic techniques were utilized. (See Appendix 2
for a more detailed explication of how the analyses were con-
ducted.) First, the three possible responses (to each comparison)
were treated as ratings of confidence that two samples being com-
pared shared a common origin—with “Yes” expressing the great-
est confidence, “Inconclusive” taken to reflect some moderate de-
gree of confidence, and “No” expressing the least confidence.
Responses were tallied and converted into two decision points us-
ing the “Confidence Rating” procedure for ROC curve generation
[see e.g., Dorfman and Alf (66) and Gescheider (67), for explica-
tion of this procedure]. One of the two decision points represents a
strict threshold; this threshold produces a low false alarm rate. The
other point represents a lenient threshold, which results in a higher
hit rate along with an increased false alarm rate. As discussed ear-
lier, these two decision points are used by examiners with the same
degree of discrimination ability, yet they produce different rates of
correct and incorrect decisions. That is, discrimination ability is the
same across both of these decision thresholds.

Second, as noted, all responses were treated as individual deci-
sions and pooled together for analysis (within each dataset). Due to
potential problems with data pooling, a procedure known as “jack-
knifing” was also implemented. To elaborate briefly: typically,
ROC curves are generated for each individual examiner responding
to a variety of stimuli. Because forensic science proficiency data
are conducted one test at time (annually) and the responses of any
given lab cannot be linked because the labs respond anonymously,



analyses had to be adapted to the nature of the available data. We
had to treat each lab as a separate observer. But with the usual ana-
lysis method, this would translate into 50 different firearms ROC
curves—one for each lab. With 50 different ROC curves, each one
would provide very little data. Instead, we have pooled the re-
sponses given by the 50 labs into a single ROC curve (with the
number of decisions equaling the number of labs times the number
of decisions made by each lab). Though pooling increases the rich-
ness of the data, pooled data run the risk of distortion (e.g., strange
or unusual observations from one or two labs may distort the
pooled data). The jackknifing procedure is designed to reduce such
possible biases. Jackknifing involves a kind of weighting of each
lab’s responses so that no one lab can artificially increase or de-
crease the pooled variability of all participating labs. This proce-
dure was applied to all analyses conducted herein. Dorfman and
Berbaum (68) provide a technique that allows for SDT analysis of
pooled, rating-method (more than two response alternatives) data.
The jackknifing procedure was originally introduced by Quenoille
(70) and was then utilized more generally by Tukey (71). See Dorf-
man and Berbaum (68) and Dorfman, Berbaum, and Metz (69) for
a discussion and a thorough explanation of the procedures and be-
nefits of the jackknifing procedure.

Firearms Identification Data from FSF Test 1985-3

In this first example, we analyze the firearms identification pro-
ficiency data. This test required that examiners compare a ques-
tioned cartridge case against three known evidence samples. The
test was originally distributed to 81 laboratories, of which 50 pro-
vided responses. The instructions were as follows:

One of your submitting agencies is investigating a murder
case where an individual was shot and killed from ambush.
The two bullets passed through the body and were not re-
covered. Two fired cartridges were recovered at the crime
scene. Extensive investigation developed a suspect who is
known to have had the same type of weapon as used in the
murder. The weapon has disappeared but it was determined
that the suspect used the weapon for target practice at two or
three areas in the county. These areas were searched and ad-
ditional fired cartridge cases recovered. The prosecuting at-
torney believes that it will be of value to the case to “link”
the cartridge cases from the murder scene to those from an
area where the suspect is known to have fired his weapon.
You are asked to examine the evidence.

Exhibit 1—two fired cartridge cases from the scene of the
crime

Exhibit A—two fired cartridge cases from the first target
shooting area

Exhibit B—two fired cartridge cases from the second tar-
get shooting area

Exhibit C—two fired cartridge cases from the third target
shooting area

Could Exhibits A, B, or C have been fired from the same
weapon as Exhibit 1?

Each of the 50 labs responded either “yes,” “no,” or “inconclu-
sive” to the three comparison questions (comparing Exhibit 1 to
Exhibits A, B, and C). Response outcomes were tallied for all 150
decisions. Using a conventional measure of accuracy, 137 out of
150 decisions were correct, suggesting an accuracy rate of 91%.
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Using ROC analysis, however, we can assess accuracy as a
function of discrimination ability alone and assess whether (and
how much) subjective decision thresholds vary by task. In addi-
tion, ROC provides an estimate of decision tendency that suggests
how labs are likely to respond to new choices, given their past
performance.

For analysis, two decision points were calculated and plotted
(see Fig. 3). The first decision threshold, Point A, represents the
strictest threshold for responding with an affirmative “match”
response. With this conservative criterion, false alarms are kept at
a minimum. Even with this strict criterion for declaring a match,
the labs performed with a high hit rate of 0.95 and a very low
false alarm rate of 0.01. (The observed false alarm rate in this
dataset was zero. In order to calculate the necessary values for the
analysis, the false alarm rate had to be set slightly above zero. See
Appendix 2.) Point B represents a more lax criterion, where the
labs were more likely to respond “yes.” Using this threshold, the
hit rate was an extremely high 0.99, but this more lenient criterion
also produced an increased false alarm rate of 0.16. Note that the
labs showed exceptional discrimination ability on this test at 0.99.
Importantly, this high level of ability is the same for both plotted
decision points. Thus, the differences between Points A and B are
due to changes in subjective decision rules, not to fluctuating dis-
crimination ability. Moreover, recall that the conventional index
of accuracy (percentage of all responses that were correct re-
sponses) found a lower estimate (91%). This is because the con-
ventional measure cannot distinguish errors produced by lack of
discrimination ability from errors produced by varying decision
thresholds.

An estimate of overall decision tendency also was calculated
from response outcomes. Given evidence samples that are, in fact,
nonmatches, participating labs were likely to provide incorrect af-
firmative responses 1% of the time. By contrast, these labs were
likely to determine nonmatches accurately for 80% of their deci-
sions. (Note that these percentages do not sum to 100 because a
third option, “Inconclusive,” was also available.)
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FIG. 3—ROC graph of decision outcomes for firearms test.
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Questioned Documents Analysis Data from FSF Test 1987-5

For this test, forensic document examiners were asked to com-
pare a questioned extortion note with known writings from four
suspects, one of whom had in fact written the extortion note. Ac-
cording to the test manufacturer, “This test was designed to be a
relatively easy and straightforward test. . . . All the writings in this
test were natural and free of disguise.” Each lab provided a
response for each of the four comparisons. Of 55 subscribing labs,
33 returned reports of their examinations. One lab, however, gave
“no opinion” responses to all questions and therefore was excluded
from our analysis. As a result, 128 decision outcomes were tallied
and analyzed.

Note that in contrast to the firearms test, where each comparison
could have led to a decision of “yes” or “no” without affecting the
other decisions, the structure of this handwriting test does not pre-
sent independent decisions to the examiners. Once one suspect was
judged to have been the author of the questioned document, all of
the others would necessarily be judged not to be the author. Thus,
the poorest possible performance—erroneously identifying a
nonauthor as having been the author (thereby excluding the actual
writer and inculpating an innocent writer, leaving the two remain-
ing suspects to be scored as correct)—would be 50% correct. (In
fact, only 52% of the examiners correctly identified the writer of
the questioned note, while 45% reached “inconclusive” results.)
Thus, treating each comparison as if it were independent of the oth-
ers can be quite misleading. Nevertheless, for present illustrative
purposes, we do treat these decisions as if they were independent
of each other.

As seen with the firearms report, sheer discrimination ability is
quite high at 0.98. Again, this level of ability is constant for the two
threshold points generated (Fig. 4). Point A is the more conserva-
tive threshold, where false alarms were quite low (0.005). But the
tradeoff resulting from this decision threshold is that the proportion
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FIG. 4—ROC graph of decision outcomes for QD test.

of hits was only 0.63. Point B represents a more lenient criterion,
where more affirmative responses are made. Notably, due to the
change in threshold, the hit rate increased markedly to 0.97, while
the false alarm rate increased to 0.25. Note how ROC analysis al-
lows us to see how greatly decisions vary as a function of where
examiners place their decision thresholds, even while their raw dis-
crimination ability remains quite high.

The estimate of decision tendency suggests that, overall, the labs
are likely to respond correctly to a true nonmatch comparison (a
“No” response) on 75% of such decisions. In addition, in this prob-
lem, the labs showed virtually no tendency (<<0.0001) to make er-
roneous affirmative responses to true nonmatches.

Using the conventional accuracy measure (the percentage of cor-
rect responses out of total responses), accuracy on this test was
71%. By removing the effects of varying decision thresholds, the
estimate of raw discrimination ability increased to 0.98. Thus, in
this example, fluctuating decision thresholds mask high discrimi-
nation ability. (Conversely, in other situations, differences in deci-
sion thresholds also can mask low discrimination ability.)

Comparing the Two ROC Curves

Visual examination of the two ROC curves suggests that dis-
crimination ability is quite high in both, as indicated by similar va-
lues for the area under the curve. The apparent superiority of
firearms examiners, or firearms examination tasks, in terms of dis-
crimination ability, is quite small.

More interesting, the differing slopes of the respective ROC
curves reflect the use of different decision criteria. Why the differ-
ing slopes if accuracy is nearly the same? In the previous section
we introduced the idea of an optimal decision threshold: the slope
of an optimal decision point is a joint function of the perceived ben-
efits of a correct decision and costs of an incorrect decision as well
as the perceived likelihood that the crime scene evidence does in-
deed match (or not match) evidence taken from the suspect. In
these data, at least, the firearms examiners have a shallower slope
(0.17), indicating a lower threshold for declaring a match, while the
document examiners have a steeper slope (1.4), suggesting a higher
threshold for declaring a match. These differences, in turn, suggest
different perceptions of the risk of error attending their different
examinations (at least under the conditions of nonblind proficiency
testing).

More generally, if these two tests were representative of the per-
formance of firearms examiners and document examiners, the data
of these ROC analyses would suggest that the greater general ac-
curacy of firearms examiners (whose hit rate was higher and false
alarm rate was lower) is due not to superior discrimination ability
but the use by firearms examiners of more consistent decision
thresholds. This, in turn, suggests that improvements in the perfor-
mance of document examiners are more likely to come from stud-
ies of factors that affect decision thresholds, such as motivation,
expectations, stakes, and so on.

The discussion in the preceding paragraphs has relied on an “eye-
ball” examination of the current data, rather than a formal statistical
comparison of the two curves. Various limitations in the data pre-
vent the application of statistical methods that assume equal vari-
ance. For further discussion, see Conclusions and Suggestions.

Conclusions and Suggestions

Though Signal Detection Theory is widely used in research in
fields as varied as aviation, psychiatry, and radiology, to date it has
barely been employed in forensic science. This article has reviewed



the basic concepts of SDT, has discussed various aspects of foren-
sic science theory and practice that likely could benefit from the ap-
plication of SDT, and has illustrated SDT analysis using forensic
science proficiency data.

With the exception of a few forensic specialties, such as DNA
typing, there have been few sustained efforts to evaluate the accu-
racy of forensic laboratory methods for analyzing various types of
evidence and the examiners who use them. Under pressure from
several quarters, most notably the courts following the U.S.
Supreme Court’s decision in Daubert v. Merrell Dow Pharmaceu-
ticals (72), other forensic science specialties are beginning to sub-
ject their methods to systematic empirical testing (73). The tools
provided by SDT would expedite the development of the needed
research.

SDT is particularly well suited to the study of decision-making
where the presence or absence of a “signal” has to be discerned
amid a complex array of other, ambiguous stimuli. The correct-
ness of an examiner’s judgment is a function of both (1) the ex-
aminer’s discrimination ability (or sensitivity to the evidence) and
(2) the decision criterion (or decision threshold) employed by the
examiner. A traditional single measure of accuracy, not disaggre-
gated into its components, is incomplete and biased by inherent
psychological factors, such as expectancy and motivation. SDT
allows researchers to disentangle the two factors. Generally, a
technician’s ability to discriminate among stimulus inputs is
rather stable. The decision criterion, however, is highly variable.
The ROC curve graphically presents these two essential pieces of
information which determine decision outcomes: (1) the area un-
der the ROC curve is an unbiased indicator of pure discrimination
ability, and (2) the points on the ROC curve represent the deci-
sion thresholds. A useful way to make comparisons between these
two fundamental components of decisions is to compare the ROC
curves generated when examinations are made under differing
conditions.

SDT would facilitate numerous informative lines of research in
forensic science. For example, from existing forensic science pro-
ficiency data, more clear answers could be found concerning the
performance of participants in those studies. Most notably, raw di-
agnostic skill could be separated out from the confounding effects
of decision thresholds. The relative accuracy produced by different
protocols and technologies could be more clearly evaluated. The
abilities of examiners with different backgrounds, training, and
experience could be more completely and clearly assessed. The
forces that cause decision thresholds to rise, to fall, or to remain sta-
ble could be identified and optimal decision thresholds could be
more rationally and effectively determined.

Few efforts, past or recent, have attempted to look at the
discrimination accuracy of specific examination methods while
controlling for such factors as the technical ability of the analyst,
the quality of the evidence, or the decision threshold used by
the examiner. Nor have studies attempted to investigate one of the
most nettlesome issues of forensic science, which is how the
organizational role of an expert (government examiner or defense
expert) may influence the decision thresholds employed in decid-
ing whether or not items of evidence share a common origin.
In that context, or even within the same laboratory, when two ex-
perts arrive at different results, we lack an understanding
of the mechanisms by which two equally technically com-
petent examiners can arrive at different results. Consequently,
questions persist about the dependability of some specialty areas.
SDT may provide clarifying insights into these and other
problems.
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Existing forensic science proficiency testing data have a num-
ber of limitations. Because they derive from a program that is
largely voluntary, all laboratories do not subscribe and provide
data. Some commentators suggest that this self-selection skews
the results toward an exaggerated appearance of accuracy because
the poorer laboratories choose not to participate. Laboratories pe-
riodically are asked for information describing methods used, the
qualifications of examiners, and time spent on examinations, but
these data have not yielded particularly useful information. The
level of difficulty of examinations is not controlled from test to
test and (without the use of SDT) it is impossible to attribute vari-
ations in results to the difficulty of the test, the competence of the
examiner, or the implicit choice of decision thresholds. While Pe-
terson and Markham (62,63) recently reviewed 13 years of profi-
ciency data, those data are not available in the published litera-
ture, nor are the raw data openly shared [in contrast to the
traditional norm in science (74)], so it is impossible to track re-
sults reliably over time, or to conduct secondary analyses on
them. The adoption of SDT obviously cannot solve all of these
problems, but it could be a useful adjunct to existing or improved
programs of research in and on forensic science.

To gain the most effective and efficient benefits of SDT analy-
sis, several steps would be advisable. Research on decision-making
in forensic science should begin to employ measures that lend
themselves more readily to ROC analysis. One such change is to
have examiners in proficiency studies rate the clarity of the “sig-
nal” they perceive on a scale, instead of (or in addition to) the di-
chotomous or trichotomous categories found in most proficiency
studies. (For example, the technicians in the pathology laboratory
illustration presented earlier in our article used a 7-point rating
scale.) A confidence rating procedure such as this is advantageous
because the estimates of accuracy are statistically reliable, it is sen-
sitive to time constraints, and it enables examiners to make use of
different decision thresholds simultaneously (as most decision
makers do in real-world decision making) (44). Most important, the
use of confidence rating procedures would help researchers to effi-
ciently and reliably measure the varying thresholds utilized by
examiners. Second, the analyses would be more informative and
more powerful if data from the same individuals or labs could be
linked over time, as is commonly done in similar research in other
fields. This would enable research to examine decision factors
across time, as techniques and technology develop and change
across the sub-fields of forensic identification. Also, the data would
be more amenable to comparative analysis among types of evi-
dence, types of cases, levels of expertise, and so on. Finally, it
would also be possible to change decision factors, such as per-
ceived probability or perceived costs, and then assess the effects of
threshold changes on the trade-offs among outcomes. Outcomes
could be compared within and between labs given knowledge of
the actual response distributions.

Although, as we illustrated in this article, somewhat heroic sta-
tistical manipulations can put existing data to use, more precise in-
formation could be obtained far more easily if scaled responses
were obtained, and if the performance of the same individuals or
labs could be linked and compared in response to different tasks.

Signal Detection Theory is a research tool that is so well estab-
lished in so many different fields, and is so well suited to the fun-
damental task of forensic science, that it inevitably will come to be
employed as a matter of routine by those who conduct research on
forensic science decision-making. The goal of this article has been
to hasten that day by introducing the fundamentals of SDT to the
forensic science community.
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APPENDIX 1
TERMINOLOGY

Signal—Information about the object of interest. For example, in
radar detection, the signal might be an aircraft or a radio commu-
nication.
Noise—In the context of radar detection, the term noise referred to
“white noise,” or interference that could mask or even mimic a true
radar signal.
Diagnostic accuracy—In the context of SDT, diagnostic accuracy
is a function of two decision factors: raw discrimination ability and
the threshold adopted for declaring a positive. In the text, for these
two decision factors we use the terms discrimination ability and de-
cision threshold. Synonyms for discrimination ability include: dis-
crimination capacity, ability, diagnostic ability.
Prior probability—The perceived likelihood that a signal will be
present or that the evidence will match.
Utility—The perceived benefits of correct decisions (hits and cor-
rect rejections) as well as the perceived costs of erroneous deci-
sions (misses and false alarms).
Decision outcomes—The correctness or incorrectness of every de-
cision made in relation to some true criterion. Every decision out-
come is one and only one of the following:

Hit—correct identification; a true positive.

Miss—failure to identify; a false negative.

False Alarm—incorrect identification; a false positive.

Correct Rejection—correct non-identification; a true negative.

ROC—An acronym for Receiver Operating Characteristic or
Relative Operating Characteristic (the terms receiver and relative
are used synonymously). The ROC curve is an analytic tool devel-
oped in SDT, which provides graphical and statistical representa-
tions of important decision factors: discrimination ability (area un-
der the ROC curve) and decision thresholds (points plotted on the
ROC curve or slope of the ROC curve).

APPENDIX 2

ROC Analysis: The Confidence Rating
Procedure

In this section we explicate our analytic strategy using the
firearms data. As stated in the text, 50 labs participated in the
firearms examination and each provided responses to three com-
parison questions: do any of the three known pairs of cartridge cases
match the pair of cartridge cases from the crime scene? In actuality,
two of the three unknown pairs did share a common source with the
unknown pair. For analysis, we tabulated all 150 responses (three
different comparisons by each of 50 labs) by the ground truth of the
comparison. As shown in Appendix Table 1, below, when the car-
tridge did not, in reality, share a common origin (n = 50), no labs
made an affirmative response. Eight labs provided an inconclusive
response and 42 labs made the correct “no” response. For compar-

isons in which the cartridge did, in reality, match, 95 labs correctly
provided affirmative responses, four labs provided inconclusive re-
sponses, and one lab provided an incorrect negative response.

The response frequencies were then cumulated from right to left,
as shown in the Table 2. In cumulating frequencies, we were able to
identify two different decision thresholds. Using the confidence rat-
ing procedure, each decision was treated as either a “yes” or “no”
response. For clarification, if five response options had been uti-
lized by the examiners, such as a scale with “definite match,” “prob-
able match,” “possible match,” “probable nonmatch,” and “definite
nonmatch” as alternatives, n — 1 or 4 decision thresholds could be
calculated. In this case, the most strict threshold would include only
“definite matches” in the “yes” response category. The next, less
strict threshold, would include both “probable matches” and “defi-
nite matches,” followed by a threshold that would include “possible
matches,” “definite matches,” “probable matches,” and so on.

Table 1 gives the raw firearms data. The three response options
yield n — 1 = 2 decision points. The first decision point or cutoff
includes those cells in Table 2 that are more darkly shaded. With
this decision threshold, only the clear matches (as perceived by the
examiner) would be identified as such. Thus, the “yes” column rep-
resents the cumulative frequency of response outcomes using a
strict decision threshold. The second threshold, including all four
shaded cells, represents a comparatively lenient decision threshold
where “inclusives” are combined with the “clear” matches.

Cumulated frequencies were then converted to response propor-
tions (Table 3). These proportions represent hit and false alarm rate
pairs for two different decision thresholds. The hit rate is equal to
the cumulated frequency of “yes” responses divided by the total
number of true matches. The corresponding false alarm rate is

TABLE 1—Response frequencies (using the firearms data).

Examiner Opinion Concerning Whether
the Samples Share a Common Origin

Ground Truth No Inconclusive Yes Totals
Non-match 42 8 0 50
Match 1 4 95 100

TABLE 2—Cumulated response frequencies (using the firearms data).

Examiner Opinion Concerning Whether
the Samples Share a Common Origin

Ground Truth No Inconclusive Yes Totals
Non-match 42 8 0 50
Match 1 4 95 100

TABLE 3—Response proportions: hit and false alarm rates (using the
firearms data).

Examiner Opinion Concerning Whether the
Samples Share a Common Origin

Ground Truth Point B Point A
Non-match (FA) 1.00 0.16 0.01
Match (HIT) 1.00 0.99 0.95




equal to the cumulated frequency of “yes” responses divided by the
total number of true non-matches (the false alarm rate for point A
was adjusted using the formula n/2-1). Point A depicts the hit and
false alarm proportions using the more strict decision criterion for
declaring a match. Point B shows the hit and false alarm propor-
tions using the more lax decision criterion. These two points were
plotted and connected to form the ROC curve. (Note that in order
to perform the necessary calculations, the zero false alarm rate
when the criterion was at Point A had to be replaced with a small
positive number, here 0.01.)

An unbiased measure of accuracy was computed by converting
the above proportions to standardized scores (Z scores or the in-
verse of the standard normal cumulative distribution) and calculat-
ing slope and intercept values. A standardized accuracy score was
then calculated using the following formula (where a = intercept
and b = slope):

a

7, =—=4
TV

The quotient was converted to the index A (using the normal cu-
mulative distribution). Az or area represents an unbiased measure
of discrimination ability and is equal to the area under the plotted
ROC curve. In this firearms example, discrimination ability was
quite good at 0.999.

An overall decision tendency was calculated using the false
alarm proportions for both decision thresholds. This measure pro-
vides an estimate of response bias in cases of a true non-match. The
tendency to say “no” was calculated using the false alarm rate for
the more lenient threshold minus 1. The tendency to say “yes” in-
correctly was obtained directly from the false alarm rate associated
with the more strict decision threshold.

Jackknifing Procedure

A jackknifing procedure was also utilized in the current analy-
ses. Jackknifing involved computing “pseudovalue” measures of
accuracy and averaging these values into a single A score. The
above procedures, frequency tabulation, cumulation of frequen-
cies, and calculation of response proportions were conducted n —
1 times (with n = number of participating labs), to produce 49
pseudovalues of accuracy and response tendency. That is, to reduce
possible biases introduced by individual labs on the pooled re-
sponses, these measures were calculated 49 times using responses
from 49 labs, that is, each time with one of the labs removed. The
final indices of accuracy and response bias reported are averages
over 49 pseudovalues. A description of this procedure is provided
by Dorfman and Berbaum (68).
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